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Stability of thin, radially moving liquid sheets 
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An analysis of the stability of thin viscous liquid sheets, such as those emitted from 
industrial spraying nozzles, is presented. These sheets are in the form of a circular 
sector whose thickness reduces as the distance from the nozzle increases. 

The Kelvin-Helmholtz type of instability usually observed causes the breakup and 
atomization of the sheet, as required in most industrial spraying processes. Waviness, 
like that of a flapping flag, is produced and increasing amplitudes finally cause breakup. 

An analytical solution in the form of hypergeometric functions for the shape of the 
sheet and the waves is obtained. This solution includes, as special cases, analyses 
existing in the literature, in addition to establishing the possibility of a new type of 
instability dependent on the distance from the nozzle. Also, the classical type of 
instability, in which the waves increase with time, is examined and relations for un- 
stable waves as a function of parameters such as the A uid viscosity, surface tension and 
sheet velocity areobtained. It is shown that there is nosingle wave that hasa maximum 
growth rate, but that the wavenumber for maximum instability increases with the 
distance from the nozzle orifice. 

1. Introduction 
Spray nozzles appear in various applications in industrial practice such as fuel atom- 

ization, fire-fighting and spraying. Many of these nozzles emit a thin sheet of liquid or a 
two-phase mixture. This sheet is atomized and disintegrates into the required droplets 
either through a Kelvin-Helmholtz type of instability, when this exists, or through 
outside excitation. 

Because of their wide applicability, the flow from fan-spray nozzles has received 
much attention and various hydromechanical models for the instability and breakup 
of the fluid sheet into droplets have been proposed. The basic study by Squire (1 953) 
treats an inviscid liquid sheet of constant thickness with parallel streamlines. This was 
followed by similar studies (Hagerty & Shea 1955; Fraser et al. 1962) until Dombrowski 
& Johns (1 963) produced an analysis including finite viscosity of the liquid and dim- 
inishing thickness of the sheet. However, a Cartesian co-ordinate system was used here 
too and later experiments (Crapper et al. 1973) have shown that the prediction of the 
above analysis, of exponentially increasing oscillations, is not usually obtained. More 
recently Clark & Dombrowski (I 972) and Crapper, Dombrowski & Pyott (1  975) have 
applied a second-order theory and a large amplitude theory, respectively, to try to 
achieve better predictions. These two studies were again based on parallel-sided flat 
sheets. 

In  real fan-spray nozzles, however, the sheet of fluid emitted usually has the shape 
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of a circular sector. Flow within the sheet is in the radial direction (Dombrowski, 
Hasson & Ward 1960). No tangential motions are usually noticeable except at the 
sheet edges, where surface tension causes a tangential contraction. This effect, which 
can even cause closure of the sheet (Taylor 1960) a t  low sheet velocities (large Weber 
numbers), does not affect the radial direction of the streamlines in the central part of 
the sheet. 

Also, as a result of the radial spreading, conservation of mass requires a corres- 
ponding reduction in sheet thickness as i t  is observed (and can also be shown by energy 
arguments) that  the velocity in the sheet stays constant. This reduction in thickness 
has been verified by Matsumoto & Takashima (1971). 

The present study will attempt, therefore, to analyse the effects of the radial spread- 
ing and the resulting changes in thickness, as well as the surface tension and viscosity 
of the fluid sheet, on the stability. The last two characteristics have been found experi- 
mentally to have a significant influence on stability (Dombrowski et u Z .  1960) and so 
were included in the analysis. 

Only antisymmetric (flapping) modes of instability are examined as previous 
analyses (Squire 1953; Fraser et al. 1962), as well as experiments (Crapper et al. 1973, 
1975), show that this mechanism predominates in the present case, as opposed to the 
‘varicose ’ mode observed in axisymmetric jets. 

2. Analysis 
The initial unperturbed system is taken to be a circular axisymmetric thin liquid 

sheet expanding radially, such as that produced by two equal impinging cylindrical 
coplanar jets (Taylor 1960). The actual shape of the spray emitted from a typical 
nozzle is just a sect’or of this circular sheet, but owing to the radial streamlines observed 
(see $ 1 )  the influence of the edges on stability is neglected. Experiments (Clark & 
Dombrow-ski 1972) show that this simplifying assumption is well justified, a t  least 
for the high-speed atomizing sprays usually encountered in engineering practice. 

A linearized analysis of antisymmetric perturbations of the sheet is performed. A 
cylindrical polar co-ordinate system (figure 1) is a natural choice. We now examine 
excursions of the sheet centre in the y direction as a result of the varioiis forces acting 
on i t  in this direction. This approach is similar to that of Dombrowski & Johns (1963), 
who, however, used a Cartesian system in addition to making some unnecessary 
simplifications, which will be pointed out later. 

Take a sheet which is moving with speed U through a stationary gas and whose 
thickness h varies as the reciprocal of distance from the origin (Matsumoto & Taka- 
shima 1971). The inertial force on an infinitesimal annular segment of length r 68 and 
width 6r due to small lateral motions can be written as 

where p ,  is the liquid density, y is the distance normal to  the sheet plane moved by the 
centre-line of the segment and K = hr is a constant obtained from 

(2 = PlhrUc = KP, uc, (2) 

where (2 is tfhe nozzle mass flow rate and 6 the included spray angle. 
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Sheet c&e-line 

FIGURE 1. Schematic description of sheet and co-ordinate system. 

Next we look a t  the force on an elementary volume due to surface tension. Only 
antisymmetric disturbances are examined here, far enough from the origin that the 
distance from the nozzle is large compared with the local sheet thickness.? The local 
slopes of the upper and lower surfaces are then approximately equal and the force due 
to surface tension is 

Et = - (2ur SO sin 7) Sr, (3) 
a 
ar 

where u is the coefficient of surface tension and 7 is t,he local angle between the sheet 
and the undisturbed position of the centre-line. We are dealing with a small lateral 
disturbance, so that we can assume sin r,~ N tan 7 and 

An additional factor producing forces in the y direct'ion is the liquid's viscosity. As no 
variations in the tangential direction are allowed, the shear stress is 

for a fluid of viscosity p. The second term in the square brackets is the result of the 
velocity profile in the sheet. This is a steady term which varies slowly with distance and 
will therefore be neglected here compared with the first term, which describes the 
resistance to wave production. Thus 

and the net viscous force on the element is 

( 7 )  
a3Y F, = pug - SO Sr. 

ar2 at 

Finally the effects of air pressure are determined. To obtain these effects we assume 
the viscous effects in the gas to be negligible and find the potential of the gas motions 

t h = K / r  from (2), so that dhldr = - K / r 2  = - h/r .  The sheet thickness is typically of the 
order of cm at 1 cm from the orifice, so that dhldr = O(  10-5) there. 
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produced by the wavy sheet. Crapper et nl. (1975) have suggested that the gas viscosity 
plays a part in the further, large amplitude development of the waves through large- 
scale vortex shedding and production of a vortex street in the air. This, however, is 
typical of a later stage in the instability and can be neglected during the initial stages 
which are studied here. 

The perturbation potential can be written, following Squire (1953), in the form 

q5 = Y(y1) m) exp [in(r - Ut)l, (8) 

where n is a wavenumber and y1 the distance from the undisturbed sheet centre-line. 
The unknown functions Y(yl) and R(r) are obtained from Laplace's equation, which 
the velocity potential must satisfy. After separation of the variables and a sequence of 
standard substitutions (Kamke 1967, chap. C), one obtains for the upper surface, 
recalling that this perturbation decays for yl+ a, 

and 

where J, and 1; are Bessel functions of the first and second kind, respectively, and Z,, 
C, and C, are constants. The potential is finite at  r = 0 so C, = 0. Finally, substituting 
in (8) we obtain 

q5 = q5, exp [ - (ny, + inUt)] Jo(nr). (11) 

The pressure gradient can be related to the acceleration of the air (Dombrowski & 
Johns 1963)) so that when speeds are low compared with the speed of sound in air, the 
pressure difference due to the wavy motion is obtained by integration: 

where pg is the gas density. The pressure is now written in terms of the vertical (yl) 
displacement, which is defined in terms of the velocity potential as 

where t ,  is a dummy time variable. Applying (13) to (1 1)  and substituting in (12) gives 

P = -pgdU2n.  (14) 

q-Pu = p g n U 2 [ y + y ]  = 2pgnU2y, (16) 

The net pressure on a point of the sheet is 

where 1 and u stand for the lower and upper surfaces respectively. The force on the 
element due to pressure differences caused by the waves is therefore 

Fp = 2pgnU2yr6rSB. (16) 

By summing (1)) (3),  ( 7 )  and (16) we obtain the force balance in the y direction. After 
simplification this is 
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Before going on to examine stability we first look for a general solution to this equation. 
This will help to give an idea of the form of waves produced by outside disturbances. 

The solution is obtained by separation of the variables: 

y = R(r) T(t ) .  (18) 

Equation (17) now takes the form 

2pgnU2r+,uK--++u R T’ [ -7 j+r77]  R’ R“ -PiKi j i  T” = O 
R T  

and we can write p1 KT”/T = h2, (20) 

where A2 is a constant. As a result, if we take A 2  > 0 so that unstable solutions may be 
obtained, 

T=C,exp ((p:;)+) - +C4exp (a) * 

We now choose the only solution which can result in an instability, i.e. put C4 = 0. 
Then the equation for R reads, after some further manipulations, 

(r+Q)R”+R’+(ar-h2,)R = 0,  (22) 

where 

Equation ( 2 2 )  is a variant of the confluent hypergeometric equation and can be trans- 
formed into the standard form (Erdhlyi et al. 1953, vol. 1 ,  p. 249) by substituting 

R = e”u(z), z = - i2a$(r+ Q), s = iai, 

This gives 
z - + ( l - z ) - - ( & + i  d2u du 

dz2 dz 2013 

and the solution of ( 2 2 )  is . .  

, 1,  -i2014(r+Q) , 1 R = C5exp(ia4r)Y[++i- Qa + h2, 
2at 

where M is Kummer’s function of the first kind. Equations (21) and (24) constitute the 
full solution of (1  7))  as the Kummer function of the second kind is obtained in logarith- 
mic form when the second parameter is unity and is therefore unbounded for r = 0 and 
h = 0. The other three M functions obtainable via Kummer’s transformation are 
identical €or our case of a second parameter of unity. The mathematical difficulty of 
further analysis of stability is highlighted by the fact that both the temporal amplifica- 
tion factor h and the wavenumber n appear in the first parameter of the confluent 
hypergeometric function M .  Varying either of these quantities causes a change in the 
nature of the resulting functions. Thus different periodic, or aperiodic, spatial depend- 
ences R can be obtained when h or n is changed. This is reminiscent of the experimental 
findings reported by Crapper et al. (1973, 1975), where both the wave form and the 
amplification changed during the spatial development of the instability. 

Some cases of interest can be obtained directly from (24). Looking first for possible 
bounds of stable regions, we take A, to be zero, i.e. consider a temporal stability limit. 
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In  this case wehave M(&,1, - Ziatr), which is (Abramowitz & Stegun 1965, chap. 13) 
a product of an imaginary exponentia,l and the Hankel function of order zero and 
the first kind: Hd1)[a4r]. The corresponding value N of the wavenumber is found from 
the argument of the Hankel function, which, as h = 0, is 

N = pg u2/(r. (25) 

This result coincides with the largest possible wavenumber for instability found by 
Dombrowski & Johns (1 963) for a rectangular viscous spray. We see, therefore, that 
the bound of the time-stable wavelengths stays the same for the cylindrical geometry, 
while the related spatial dependence is now of Bessel-function shape, i.e. the cylindri- 
cal geometry will cause spatial decay of the temporal limit-cycle wave amplitude. 

The far-field solution of (23) for large z (which corresponds to large r )  is obtained by 
means of the asymptotic expansion for large 1x1 and fixed parameters (Erddyi et al. 
1953, p. 278). The hypergeometric form (24) decays as r-4 in the far field, i.e. purely 
spatial disturbances vanish far from the nozzles. 

The genera.1 solution (24) includes, however, some intriguing further possibilities of 
unstable behaviour not apparent in the theoretical studies mentioned above. More 
general information on the behaviour of the function (24) can be obtained by means of 
the Sonine-Polya theorem (Szego 1959, p. 164) without knowledge of its actual shape 
for different values of the parameters. Applying this theorem to (24), we find that 
successive maxima of R form an increasing sequence when L ( r )  = ( r  + a) (ar - h2,) ia 
a decreasing, continuously differentiable function of r .  This can be interpreted as a 
necessai-y condition for a different (spatial) type of instability. When the amplitudes 
of such successive maxima increase they may (but do not necessarily, i.e. this is not a 
sufficient condition) reach values where the sheet breaks down or nonlinear effects are 
obtained. Here this behaviour is called 'spatial instability', as it is independent of the 
temporal behaviour. Rewriting the expression for L ( r )  above we have 

L ( r )  = ar2  + (Qa - h2,) r - Qh2,. (26) 

'To find the range of r for which L(r)  is a decreasing function we observe that it is para- 
bolic in r ,  i.e., for r smaller than the value re for which dL/dr = 0, L decreases. From 

re = h2/4ag- $a (27) 
(26) 

and when r < re this kind of spatial instability is possible. On the other hand when 

r > h2/4aa- $a 
the deformed spray sheet has decreasing maximum amplitudes as the distance from the 
origin increases, i.e. the asymptotic decay obtained above predominates. This is an 
interesting result which qualitatively agrees with the observations of Crapper et al. 
(1 975), who found that waves on the sheet grew to a certain distance, being damped 
further away from the origin. 

Writing out the expression for the critical radius re, 

we see that the critical radius for spatial growth of disturbances depends strongly upon 
the temporal amplification factor. For positive h (only real values of all quantities in 



Stability of thin, radially moving liquid sheets 295 

(28) are taken), i.e. temporally unstable cases, spat,ial instability in the present sense 
will occur when 

The case of negative real h is of more interest. This ostensibly stable situation allows 
spatially increasing perturbations when 

i.e., the larger the temporal stability, the larger the region of possible spatial instability. 
The actual value of re can be up to the order of centimetres for typical industrial low- 
pressure sprays, decreasing with increasing sheet velocity. 

3. Approximate solution for the far field 
The general considerations of the previous section have enabled us to establish 

bounds for stability in both the temporal and the spatial sense. However, owing to the 
complicated form of (24), i t  seems that generalizations of the other results of the 
simplified analyses mentioned in the introduction will be extremely tedious. Previous 
studies of stability placed great importance on the 'wavelength of maximum insta- 
bility', i.e. when h attains its greatest positive real value. This wavelength served as a 
basis for estimates of the size of ligaments torn off the sheet, which then dissipate into 
droplets. This model has however been disputed recently by Crapper et al. (1975). The 
present results tend to confirm their arguments, as there will not be a single periodic 
function with maximum amplification for the whole sheet, so that the dominant 
wave will depend on its point of origin in addition to being distorted. 

Next, we examine an approximation to the case studied in the previous section, in 
order to show the relation between the present general solution and previous results. 

The model is simplified by assuming the changes in thickness to be negligible. This 
is typical of the region far from the nozzle [see paragraph following (2)]. The force 
equation has to be rewritten, as (6) takes the form 

where H i s  the now constant thickness of the layer. Equations ( l ) ,  (3) and (16) remain 
unchanged, so that the equation for forces in bhe y direction is now 

Separating variables as in (1 8) one obtains 

1R' R" T" 
(33) 

The solution for T is identical to (21) with H replacing K and the equation for R is 

2pg n U 2  - h2 R = 0, 
1 R" + - R' + 
r pHh/ (p ,  H ) J  + 2a (34) 
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FIGURE 2. Ratio of wavenumber with maximum amplification factor to wavenumber with 
maximum amplification in an inviscid parallel-sided sheet 0s. sheet velocity for various sheet 
thicknesses. 

which is a Bessel equation, i.e. the far-field behaviour of (24) is retained. Thus 

where A ,  is a constant and M is the coefficient of R in (34). M i  is then the wavenumber 
of the spatial dependence, so that a specific relation between h and n can be found for 
this case: 

2pg nU2 - h2 
= n2, 

vh(p, H)* + 2cT 

where v is the kinematic viscosity of the sheet. Solving for h gives 

(35) 

Taking now the upper (positive square root) solution, inspection of (36) shows that 
h = 0 (bound for stability) when pgnU2 = cTn2, i.e. 

n = pg U2/(r ,  (37) 
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which is the same result as (25). In this case, however, further information may be 
obtained, since, when n increases above the value given by (37)) A becomes negative, 
so that (37) is an upper bound for unstable wavenumbers, i.e. wavelengths smaller 
than that obtained from (37) will be stable. The wavenumber n, for which A attains its 
largest real positive value is now plotted us. velocity (figure 2)) and can be seen to be a 
function of H = &/(plrU5) ,  i.e. of distance also. As a result, for any finite viscosity, 
there will be a different ‘wave of maximum instability ’ (obtained by moving vertically 
upwards on figure 2) with increasing wavenumber as the distance grows. The only 
case of a single wave of maximum instability is obtained when the sheet is inviscid. In 
that case n, is, from (35), 

which is identical with the result obtained by Squire (1953). Figure 2 is normalized by 
this value to enable comparison over a rather wide range of the parameters. The 
inviscid approximation is seen to be satisfactory for liquids of low viscosity such as 
water (dashed lines), for which even at  very high velocities (100 m s-l) the greatest 
change in the ‘maximum ’ wavenumber is less than 20% when the distance changes by 
a factor of 100. On the other hand for viscous liquids ( v  = 1 om2 s-1, full lines) the wave 
of maximum instability as defined here is much longer than that predicted by (28) 
(smaller wavenumber) and the changes as one moves away from the nozzle are by a 
factor of two or more. 

n, = pg U2/2u, (38) 

4. Conclusions 
The analysis in $ 2  shows that the cylindrical expansion of the sheet emitted from 

fan-spray nozzles has a large influence on the stability, changing the form of the waves 
produced and their dimensions. The form of the waves, as well as the typical wave- 
length for instability and breakup, is dependent upon the original location of the 
disturbance, and deviations by a factor of 5 from predictions of the parallel-flow model 
are obtained (figure 2) for cases of practical interest. A new possibility of spatially 
growing waves is found, as a result of the characteristics of the hypergeometric 
function which describes the normal excursions of the sheet due to perturbations. It is 
not yet clear how and if this effect interacts with the time-dependent wave motion 
and an experimental programme to check this and other predictions of the present 
theory is now being carried out, as data in the literature do not usually contain all the 
required parameters. 
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